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We discuss on the worldwide famous Sudoku by
using mathematical approach. This paper is the 7th
paper in our series, so we use the same notations
and terminologies in [1] without any descriptions.

11. Latin squares and coordinate transforma—
tions.
A map f:J,X J,—J; is a Latin square map
provieded that it satisfies the following condition:
(LSM) f | b:b6— ], is bijective for each berOW U cOL.
Here rOW is the set of all rows and cOL is the set of
all columns of J; X J,, respectively.

Let L, be a subset of J; X J, and f,: Ly—J;be a map.
A map f:J,X J,—J; is a Latin square solution map
of f, provided that it satisfies the following condi—
tion:

(SOL) f is a Latain square map with f | Ly=f,.

Proposition 56.

Let f:J;X J,—J; be a Latin square map. Then we
have the unique maps g: J3;X J,—»J; and h: J1X J3— ],
with the following conditions:

(i) flg(B),j)=*F for each B=(k,j)EJ3X Js.

(i) fU4,h(7))=Fk for each T=(i,k)e ], X J;.

Proof. Takeany B=(k,j)e ;X J,. We put
c;={(4,5) 1 ie J1}jecOL. Since c;C J; X J,, by (LSM) we
have that

(1) f1¢jic;>];is bijective.

By (1), there exists the unique i,€ J, such that

2) (ipj)ec; and

(3) fliod)=k.

Thus, we can define a map g: J3x J,—J, by g(8)=1,.
Therefore, by (3) we have that

@) flg(B)))=Fk

(4) means the condition (i).

Next, we consider the uniqueness of g.
Let g, g’: J3X J,— ], be maps with the condition (i)
Thus, we have that

() flg(B),j)=F for each B=(k,j)e],X J,,

(6) f(g"(B),j)="k for each B=(k,j)e J;X J,.

* Emeritus professor, Yamaguchi University, Yamaguchi City,
753, Japan.

By (1), (5) and (6) we have that
(7) g(B)=g"(B).

Therefore, we have that g=g’. Hence we have the
uniquness of g.

By similar ways we can show (ii). Hence we have
Proposition 56.

The maps g and % in Proposition 56 are induced by
f, thus, we put g=w,(f) and h=w,3( f), respective

—ly.

Proposition 57.

Let f: JyX J,—J; be a Latin square map. Then g
=04 f):JsX ] iand k= 0g5(f): 1 X ]~ ], are
also Latain square maps.

Proof. We show the following Claims:

Claim 1.
g | ¢jic;— ], is bijective for each je J,and
c;={(k):k=12,.91C J3X J;.

Claim 2.
g | r,:7,— ], is bijective for each ke J;and

Y= {( k,]):]= 1,2,...,9}C]3 X ]2.

Proof of Claim 1.
Take any je J, First, weshow thatg | c;:c;— ] is
surjective.
Takeanyie]J,. We put
1) k=fli, )]s,
2) B=(kjlec;CJsX ;.
By (i) of Proposition 56
3 flg(B)j)=k.
By (1), (3) we have
@) f,5)=fg(B),)).
By (LSM) of f for columns and (4) we have that
(5) g(B)=1.
Thus, by (5), g | ¢;:¢c;— ], is surjective.

Next, take any je J,. We show that g | cjic;~ ] is
injective.

Take any 8, =(k,,), B2=(kyj)Ec; such that

©6) g(81)=9g(By).
By (i) of Proposition 56 we have

@) flg(B1).f) =,
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),J) = ks.
)we have

8) f(9(B:
(6 {(7),(8
) ki=k,.

By (9) we have
(10) B,=B..
Hence, by (10) g | ¢;:c;— ], is injective.
Therefore, we have Claim 1.

(

Proof of Claim 2.

Take any ke J;. Weshow that g | 7,:7,— ], is
surjective.

Take any i€ J;. By (LSM) of f for rows, there exists
a joe J,such that

(A1) f(i,jo)=F.
We put

(12) By=(k,jo)E7,CJ3X /.
By (i) of Proposition 56, we have that

(13) f(9(Bs)jo)=F
By (11),(13) and (LSM) of f for columns, we have that

9(By) =i.

By (14) we have that g | 7,:7,—J, is surjective.

Next, take any ke J,.
we show that g | 7,:7,—]J; is injective.
Take any 8,=(k,7y), B5=(k,js)€7,C J3X J, such that
(15) 9(B)=9(B)=i1.
By (i) of Proposition 56, we have that
f(g(134),j4) = k,
(7) F(9(Bs).js) =
By (15) (16), (1 )We have that
flinj)=
f( 1:]5)=
By (LSM) of f for rows, and (18), (19) we have that
(20) ji=Js-
By (20) we have that 8,=(k,j,)
(21) B4=Bs.
Thus, by (21) we have that g | 7,:7,— ]/, is injective.
Therefore, we have Claim 2.

=(k’]5) = 195’ i'e'y

By Claim 1 and Claim 2, g=3(f): JsX J,—> )1
forms a Latin square map.

By similar ways, we can show that
h=wus(f):J1X ]3], formsa Latin square map.

Hence, we have Proposition 57.

By Proposition 57, g=o3(f): JsX J:=) formsa
Latin square map. Thus also we have the Latin
square map @q5(9):J1X Jo= s

In these Latin square maps we have the following

Proposition.

Proposition 58.

Let f:J; X J,—J; be a Latin square map. Then we
have that

() oas(@as(f) =1,

(i) @ps(@es(f)=1.

Proof. We show (i).

We put g=w0.3(f) and f*=wo3(g). Thus by (i) of
Proposition 56, we have that

(1) flg(B),j)=F for each B=(k,)E];X ],

2) g(f*(a) (el X ],

Take any a=(i,j)e J; X J,. We put

3) fli,5) —f( )= k.
We put 8= . Thus by (1) we have that

4) f(g(ﬁ),j) =k.
By (LSM) for the column ¢; ,(3),(4) we have that

(5) glk,j)=g(B)=1.
By Proposition 57, g is a Latin square map. Thus, g
satisfies the condition (LSM). Then by (2), (5) and
(LSM) for g, we have that

6) fa)=k.
By (3),(6) we have that

(7) fla)y= fHa)=k.

By (7) we have that

@ f=s
Hence, by 8) we have (i).

By similar ways, we can show (ii).

Therefore, we have Proposition 58.

,j)=i for eacha=

Let f:J,x J,—J; be a Latin square map. Nowwe
make a new map f':J, X J;—J; as follows:
fU(j,0) = fli,j) for each (j,))e J, X J;-
And we put f'=oq,( /).

Proposition 59.

Let f:J,X J,—J; be a Latin square map. We have
the followings:

(i) fl=wqa(f):JoX Ji—J3isalsoa Latin square map.

(il) @@ ) =7.

(iil) @ q3(f) =0 12(@@3(@2(f)-

(iv) @p3(f) =0 12(@03(@00(f)-

Proof. We can easily show (i) and (ii) by using the
definition of f".

We show (iii). Let b= 3(f"):Jo X Js—J1 and

(h)' =@ q(hy): J3X J;— - By Proposition 56, we have
) £, mik)=Fk for each (€T, X ;.

By (1) we have that for each (/)€ J3X J»,
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f( ,] j) f (], ,])) ft(],hl(],k)) - k, i.e., T (xlvxZ’x3) (xad)rxa(Z)’xa(B))

@ f(( ))!(k,5),5) = k for each DNETsX I for any (x,25205)€J1 X J, X ]
Let g=w4(f):J3X Jo—>J .. By Proposition 56 we Special cases, usually, we use the notations as
have that follows:
(3) flglk,ilj)=F for cach (ke Ts X Jy. (1’2'3> —(1,3), <1’2’3> —@23), (1'2’3) ~12)
By (2), (3) and the uniquenss of Proposition 56, we 32,1 13,2 2,13
have that and so on.
) g=(hy". Thus we can also use the notations :
Thus, by (4), we have Tap: JiX T X J5= T X J1X T3
®as())=g=(hy)' = 0q(h) = 0@ f") Tas: JiXJoX Js—=TaX JoX T4
=0q(@a3(@a2(f)) ie, Tos: JiXJoX JsoT1X J3X ],
(0) @ 3(f) = q2(®c3(@02(f)- are defined as follows:
By (5) we have (iii). Toofirisk)=(ji,k)

T 3(i,5.k)=(k,j,i)
To3(i,5,k) =(1,k,))
for each(i,jk)e J; X J, X Js.

We show (iv).

Since we have (iii), we use (iii) for @ ,( f). Thus we
have .
(6) ©13(® 12 ) = 0 02 O as(@aa( @) We can easily show Proposition 61.

y (ii) and (6) we have that

©03(@a2(f)) = Oq2(®e3(f).

(7 )( Proposition 61.
By (7) we have that
)
(i
) ®

We have the following:

(i) T.T,=T,, for each permutations ¢ and z.
8) @ @a3(@a2(f)=002@q2O03(f)-

By (ii) and (8) we have that (i) T,,=1 for oy= (1’2’2’):
©) @qz(@qz(@0(f)=0gsf). =

By 9) we have (v) For a map ¥: X—Y we define the graph
Therefore, we have Proposition 59. GRH(v) of v as follows:
Remark 60. GRH(¢)={(x,9(x)): 2€X}c XX Y.

(a) Every sudoku map is a Latinsquare map.
However, we have many Latin square maps which
are not sudoku maps.

(b) If fis a sudoku map, then @, f)isalsoa

For Latin square maps f,g,k# in Proposition 56
and f' in Proposition 59 we have graphs as follows:

GRHf—{ f iae i X o} J1X Jo X T3,

sudoku map, GRH(9)={(B,9(B):BE 3 X Jo}C J3sX Jo X J1,
(c) There are many sudoku maps f, but o s(f) and GRH(h {( TG]‘ X TS JiX TsX o
3 f) are not sudoku maps. GRH(f { o€ X N JoX JiX Jo.
Proposition 62.
12. Sudoku matrices and coordinate trans— Let f:J1X J;—J; be a Latin square map.
formations. (a) For each o €{(1,2),(1,3),(2,3)},
Let 0:{1,2,3}]-{1,2,3} be a bijective map. Usually, we To: v X JoX J5=T oy X J o X Jois)
say that ¢ is a permutation on theset {1,2,3}. Alsoo is induces an map
denoted as 0=< 1,23 > t/=T, | GRP(f):GRP\f)>GRP(,( f)).
a(1),6(2),0(3)

(b) For each 6 €{(1,2),1,3),2,3)},
Let 7:{1,2,3}-({1,2,3} be an another bijective map. +7-GRP o
Then 7o is defined by (TU)(Z)=T(0’(Z)) for each 26{1,2,3}. re . (f)_)GRP(a)a(f)) andt,,” :GRP(wa(f))_’GRP(f)
Then 7o is also bijective. satisfy that
125 =1 and tot2d =1,
) of theset (0 /s bijective,

Proof. Take any (a, fla))eGRP(f). We put
(1) a=(injo)e], X ], and

1,2,3

a(2),6(3)

{1,2,3]. we define a transformation
T, JiX JaX T J oy X J oz X Joz by

For each permutation ¢ = <
a(1),
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(2) ko= fla)= f(io, o) E J3.

Claim 1.
(a) holds for ¢ =(1,3).
By definitions, we have that
3) Tusla.fla)=Tqa(injoko) = (kojonto),
@) g=0wq3( T3 X T
By Proposition 58 we have
6) f=ous(9):]1X T
By Proposition 56 for g and (5) we have that
6) g(f(i,9),5)=1i for each(i,j)e]J X J,.
By (2), (6) we have that
(7) g(kosjo) = g(f(i0Jo)sJo) = to-
Thus, we put 8=(ky,jo) € J3X J, and by (7)
8) g(B)=1,.
By (8) we have that
9) (kosjorio) =(B,9(B)EGRP(g).
By (3),(9) we have that
(10) Ty e, fla) =(8,9(8))eGRP(g).
Thus, by (10), we have that
(11) T4 3(GRP(f))cGRPF(g).
By (11), T3 induces a map
(12) t{ 5:GRP(f)>GRP(g).
Hence, we have Claim 1.

Claim 2.
(b) and (c) hold for ¢ =(1,3).
We can apply Claim 1 for the Latin square
map g=oq3(f). Thatis,
T,GRH(g)CGRH(w,(g)).
Thus T, induces a map
(13) t§3:GRH(g)>GRH(® 4(g)).
By Proposition 58 and (4), we have that
(14) 03(9)=0q3(@q3(f)=S.
Then, by (13),(14) we have that
(15) t&3:GRP(g)>GRP(f).
By Proposition 61, we have that
(16) TusTa3=Tas9= Tno =1.

Since the maps t{ 3 and ¢§ ; are induced by T 3, by
(12) and (13), (16) we have that
(17) tgpothy=1and tizetly=1.
By (17) we can easily show that
(18) t4s and tg s are bijective.
Thus, by (17), (18) we have Claim 2.

By Claim 1 and Claim 2, we have (a), (b), (c) for
a=(1,3).

By similar ways we can easily show (a), (b), (c)for
other 6€{(1,2),(2,3).. Hence we have Proposition 62.

Remark 63.

1,2,3
1,2y3>= 1’ wUO(f) =f and

S={0,(1,2),1,3),(2,3)}. By Proposition 62, we have

maps to*”:GRP(o ( f))~GRP(f) and
t/:GRP(f)>GRP(w (f)) for each o,r€S. Then we

have tfot2"”:GRP(w ,(f))~GRP(w{ f)) which is

induced by T.oT,=T.,. Hence, t{ot>*” is bijective.

We put 00=<

Let f: J; X J,—J; isa Latin square map. Let
K=(K.)ac,xs, be a Latin square matrix associated

with f provided that it satisfies the conditions:
(LMTX) fla)e K,cJ;for eachae J;X J,.

Let LMTX(f) be the set of all Latin square matrices

K associated with f.

AsetUcJ, X J,X J5 is a neighborhood of f provided
that it satisfies the condition
(NBH) GRP(f)cU.
Let NBH(f)={U: Uis a neighborhood o f f}.

We define maps 9, LMTX(f)>NBH(f)and
0, NBH(f)»LMTX(f) as follows:
For each K=(K,)acjx;,ELMTX(f), we put

v/(K)=U(K) ={(irj’k)ejlx.,2xjB:kEK(iJ)}'

For each Ue NBH(f), we put 6 {U)=K(U),
K(U)=(Ug)aey,xs, and U,={k: (i,5,k)€U} for each

a=(G,)e ] X J,.

We easily show that the maps»,and 6,are well—
defined. And we can easily show the following:

Proposition 64.
Let K,LeLMTX(f)andUVeNBH(f). We have the
followings:
(a) n,:LMTX(f)>NBH(f)and
6 ,:NBH(f)»LMTX(f) are well—defined.
(b) 6 0ms=1andns0,=1.
(1) 0,and n,are bijective.
(c) If LK, then n {L)CnAK).
(d) If VcU, then 6 V)< 0 (U).

In the proof of Proposition 62 we show that for
eachoefo,, (1,2),(1,3),(2,3)},
Ty JiX JoX Jo=T oy X Jo X J oz
induces
T.(GRP(f))=GRP(®,(f))-
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Hence, we can define K e {Ka—{ko} forasR(A)—C(B)
Ty f):NBH(f)>NBH(o,f)) by K. forae J,x J,—(R(A)—C(B))
Ty NU)=T,U) for eachUe NBH(f).

(CR) K*=(K})acs,x;, ELMTX(f). Here
. K, —{ko} foracC(B)— R(A)
“‘{Ka forae ] x J,—(C(B)— R(A))

Since T,T,=1, we can easily show the following:

Proposition 65.
Let 0 €{0,(1,2),(1,3),2,3)} and U Ve NBH(f).

Letise ], , joc ], We consider the followi
()T f): NBH(f)—>NBH(w,(f)) is well—defined. ctio€Ji, o= /> We consider the following

conditions for K:

(b) Ty @) To f)=1, Ty fleTyHwlf)=1. (CNSF) | K(Ax{jg)| = | A|
(1) Ty f), Tiw(f)) are bijective. (RNSF) | K({ig)xB)| = | B|.
(¢) If VU, then T NV)C TS /XU Here, K(S)= U{K,:@cS)} for each SC J; X /.
Now, for each e €{g, (1,2),(1,3),(2,3)}, we can define Proposition 67.
MX,():LMTX(f)»LMTX(w,f) by Let K=(Ks)acy,xj, ELMTX(f). We have that
MX,(f)=0,,poTf)ons: (a) (CI) implies (RC).
LMTX(f)»NBH(f)>NBH(o (/)—>LMTX(w, f) (b) (RI) implies (CR).
By Proposition 64 and Proposition 65 we have the Proof. We show (a).
following. Claim 1.
Proposition 66. fla)xk, for eachaeC(B)— R(A).
For each o €0 ,(1,2),(1,3),(2,3)}, each Latin square Since Ke LMTX(f),
map f:J,X J,—J,; induces the bijective map (1) fla)e K, for eachae J; X J,.
MX,(f):LMTX(f)>LMTX(o,(f)) By (CI) we have that

and it satisfies the followings: (2) k&K, for each a€CB)— R(A).

(a) MXa(w,,(f))OMX,,(f) — 1’ BY (1),(2) we have that

(b) Let K, K’e LTMX(f). 1f K'<K, then MX,(f(K) Hence wehave Claim 1.

SMX(fIK). Let g=w3(f):J3X J,—J,. We define a map
We recall intersectable n—systems, which are gk":h—)f'l by

called by n—igeta systems. 4) g4,(7)=9(kej) for each je J,.
We recall the notations as follows: Claim 2.

For eachie ]}, r;={(i,j):je ]} Ji X ], isthe i—th g:(B)CA.

row and for each j&J, ¢;={(i.7):i€)jc]ixXJzisthe  we assume that Claim 2 does not hold. Thus, we

j—th column. have that
Letx#b int 1=#<9 ©) fo=B
et » be an integer, 1<# <9. 6) glkej)SA.
Let A={i11i2’""in}cjl: B={j19j2r"’jn}c.,2) k0€j3y We put

RA)=U{r;:icA)=Ax],,
CB)=U{c;:jeB)=J, X B.
Thus, RIA)NC(B)=A X B.

() i9=g(kojo) & A.
By definition of g, we have that
8) flg(k,j),j)=F for each(k,j)e J3X J,.

Let K=(K)ac ) x7,ELMTX(f). Then we have |
i . o 9) f(g(koj),j)=Fk, for each je ],
We consider the following conditions for K: Thus, by (9) we have
O koS Ko for cach acQB)—RA) (10) A(glko oo =
(RI) k&K, for each ac R(A)—C(B). By (7(10) we have
<RC) K*:(K;)aejlsz ELMTX(f). Here (11) f(iO’jO) =ko-
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By (5),(7) we have

(12) (i07o)EC(B) = R(A).
(11) and (12) contradict to Claim 1.
Hence we have Claim 2.

Claim 3.
gko(B) =A.
By Proposition 57, g is a Latin square map. Thus
we have that
(13) g,, is bijective.
By (13) we have that
(14) n=| B| = | g,(B) |
By Claim 2 we have that
15 lgBI<|Al=n
By (14), (15) and Claim 2 we have that
(16) g,,(B)=A.
By (16) we have Claim 3.

Claim 4.
f(B)xk, for each Be R(A)—C(B).
We assume that Claim 5 does not hold. Thus, we
have some 8; such that
(17) B,=(i,j))ER(A)—C(B), and
(18) f(ilrjl)zf(ﬁl)=k0-
By (17) we have
(19) i,€A and j;&B.
By (19), Claim 3 we have
(20) j,eB and
(21) iy= gz (J2) = 9(kerJ2)-
By (8) we have that
(22) f(9(koi2)si2) = ko
By (21), (22) we have that
(23) flis2)=F(9(korja)s72) = o
By (18), (23) we have
(24) f(i1’j1)=f(i1’j2)=k0-
Since fis a Latin square map,
(25) f | 7;:7;—>]5 is bijective.
Here, 7; ={(i1,j): j€J,} is the i, —th row. By (24),(25)

we have that
(26) j1=j2-
By (19),(20),(26)
27) )& B> j,=J1-
By (27) we have a contradiction.
Hence, we have Claim 4.

Since Ke LMTX(f), we have that
(28) fla)e K, for eachae J;X J;.
By Claim 4, (28) we have that
(29) K3 —{ko} 2 f(B) for each BER(A)—C(B).

By (29) we can easily show (RC).
Hence, we have (a).

By similar ways we can show (b). Thus we have
Proposition 67.

Proposition 68.

Let f:J, X J,—J; be a Latin square map and
g=wq3(f). Let KELMTX(f)and
Lysy=MX, 3Kl eLMTX(g). Let AcJ,, BC],,

| Al = | B| =nand k],

Then the following (a) and (b) are equivalent:

(a) K satisfies the condition (CI):

(CI) ky& K, for each acC(B)— R(A).
(b) L4 satisfies the conditin (RNSF):
(RNSF) L 3({ko}x B)=A.
Proof. We put K=(K,)acj,x7,» Las=(Lg)serx7s,»

A= {il,iz,...,in} C]l and B={j1yj27-"rjn} C]Z'

We show that (a)—(b).
By definitions we can show that
(1) Lg={ie],:keK;} for each B=(k,j)E J3X J,.
Let S={(kyj): j€ B} ={ko} X BC{ko} X J,.

Claim 1.

Ly A for each BeS.

Take any S and put 8=(k,j,),/,€B. Takeany
ieL, By (l) we have that

(2) k€K, and ag=(i,j,).
We show that

3) ieA.

We assume that
4) igA.
By (4) and j,€ B, we have that
5) ay=(i,j,) €C(B)— R(A).
By (a) and (5), we have that
6) k&K, .
Since (6) contradicts to (2), we have (3)ie., L,CA.
Hence, we have Claim 1.

Claim 2.
U{Ls:BeS}=A.
By Claim 1 we have that
(7) U{Ls:BES}CA.
Since L, 3 LMTX(g), we have that
(8) g(B)e Ly for each B J3X Jo.
Then we have that
9) g(S)c U{Ls:BES)
Thus, by (7), (9) we have that

— 184 —



Mathematics and Sudoku VII

(10) g(S)c U{Lg:BeS}c A
Since g: J;X J,— ], is a Latin square map by
Proposition 57, we have that
(11) g | {ko} X Jo:{ko} X J,— ], is bijective.
Since S={(kyj):j€ B} ={ko} X BC{ko} X J2 by (11)
(12) g | S:S—J, is injective.
By (12) we have that
) 19S) | =1S]=n
By definitions, we have that
) ISI=1Bl=]A]|=n.
By (10), (13), (14) we have that
(15) g(S)=U{Ls:BeS}=A4
Hence, by (15) we have Claim 2.

Since Ly 3({ko} X B) =
we have

(16) L 3({ko} X B)=A.
By (16) we have (b).

U{Ls:B< S}, by Claim 2

We show that (b)—(a).

By Proposition 57

(A7) g=wq3(f). g: J3X J;—J, is aLatin square map.
By (b), Ly 3€ LMTX(g) has

(18) A= Lys({ko} X B)=U{Lg:BE(ko} X B}.

By (17) we can put M5 =MX3(9)(Lq3) and
also put My 3 =(Ma)acj xj, ELMTX(® 1 5(g)).

By the definitions we have that

(19) M, ={ke];:ieL, ;)
for eacha=(i,j)eJ, X J;.
Claim 3.

koM, for each aeC(B)— R(A).
We assume that Claim 3 does not hold. Then, there
isan ayC(B)— R(A) such that
(20) koe M, ayeC(B)— R(A) .
We put ay=(iyj,). Since ayeC(B)—
21) iy& A and j,eB.
By (19), (20) we have that
(22) ig€ Ly jy) -
Since j,eB by (21),
(23) Bo={(ko,jo) E{ko} X B.
By (18), (22), (23) we have that
(24) ipeLg,C U{Ls:BE(k)) X Bj=A.
Thus, (24) contradicts to (21).
Hence, we have Claim 3.

R(A), then

By Proposition 58 and Proposition 66, we have that

(25) f=wqs(g) and K= M,
By (25) and Claim 3 we have that

Claim 4.

ky& K, for each a=C(B)— R(A).

By Claim 4 we have (a).
Therefore, (a) and (b) are equivalent. Hence
we have Proposition 68.

By the similar way as Proposition 68 we can show
the following Proposition 69.

Proposition 69.
Let f:J;X J,—J; be a Latin square map and &
=wy3(f). Let KeLMTX(f)and Ly
=MXq3(f\K)ELMTX(h). Let ACcJ,, BC],,| A |
= | B| =# and kyeJ; Then the following (a) and (b)
are equivalent:
(a) K satisfies the condition (RI):

(RI) ky& K, for each a=R(A)—C(B).
(b) L satisfies the condition (CNSF) :

(CNSF) Lis(A X {ko))=B.

By the same way as Proposition 5, we can easily
show the following Proposition 70.

Proposition 70.

Let f:J;X J,—J; be a Latin square map. Let
K={Kac)x;,ELMTX(f). Let SCbC J; X ], be a set
with

(NSF) | K(S)|=1S].

If b is a row or a column, then
K*={K;}QEIIXIZELMTX(f). Here,

K.,—K(S) foraeb—-S
K, forae ] X ],

*

a

—(b=9)

Proposition 71.

Let f:J;X J,—J; be a Latin square map and
g=wu3(f). Let AcJ,BcJ, | A| = | B| =nand
ko€ J3 Let K={(K.}aej x;,€LMTX(f) and

Lopy=MXq3(/XK)ELMTX(g), Las={Lgpesxs,- It K

satisfies the condition (CI), then we have the
followings:

() K*=(K3)aesxs, €LTMX(f) with
K*—[Ka—{k()} forae R(A)—C(B)
* K. forae ], X J,—(R(A)
(b) L{y3=(Lp)pesxs,ELTMX(g) with
LE:{Lﬂ—A for Be{kyx(J,—B)
Lg for B€J3X Jo—({ko) X(J,— B))

—C(B))
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(c) K*=M. X(l,s)(g)(L(*l,S)) » Ligy=MXq3(f (K*).

Proof.

By Proposition 67, we have (RC). Hence we
have(a).

By Proposition 68, L, 5 satisfies (RNSF). Thus,
by Proposition 70, we have (b).

Proof of (c).
Now, we continue our arguments by using
same notations in the proof of Proposition 68.
By the definition, we have that
(26) Lis=Lqys.
By (b) we can put
May=MXq3(9)NLas) ELTMX(®3(9)),
M 5= MX3(9)Li3)€ELTMX(w3(g)) and
M?1,3>=(M2)ae11><12'
By (26) and Proposition 66, we have that
(27) Miy< My,
By (25), (27) we have that
(28) Miy<K.
By definitions, we have that
(29) Mi={ke J5:icL},;)
for eacha=(i,5)€J; X J,.
Since Ly Ly for each B J3 X J; by (26), by (19),
(29) we have that

Claim 5.
M.cM,for eachaes ], X J,.

Next, we show that

Claim 6.
k&M for eachas R(A)—C(B).
We assume that Claim 6 does not hold. That
1s,
(30) kye My for somea, & R(A)—C(B).
Put a,=(i,,j,)€ R(A)—C(B). Then we have
31) i,€A and j,&B.
By (29) we have
(32) M;“={ke Jsii,E LZkJ.,)} .
By (30), (32) we have that
(33) i, €L, -
By (31) we have that
(34) (ko,j.)Elko} X Jo—{ko} X B={ko} X J;—S.
By (b), (33), (34) we have that

(35) 1,€ L0k, i =Lityjn—4 -
Thus, by (35) we have that
(36) i, A.
(36) contradicts to (31). Hence, we have Claim 6.

Claim 7.
M, —{kj}cM; for eacha,eR(A)—C(B).

We assume that Claim 7 does not hold. Then
we have

@) M, — (kS My,
for some a,=(i,,7,)€R(A)—C(B).
By (37) we have that
(38) i, A and j,&B.
By (37) there exists a k,€ J; with
(39) k,eM, —{ko} and k, M, .
Since k,&M, —{ko} by (39), by (19) we have
(40) iueL(ku,,-“) and &, k,.
Since k,&M; by (41), by (31)we have that
41) i, &L, 5, -
Since k&, k, by (40), we have that
(42) (ki) & (ko) X Jo—S.
By (b), (42) we have that
43) Likyi=Likysn -
By (41), (43) we have that
44) i, &L, ;0 =Lk, -

(44) contradicts to (40). Hence, we have Claim 7.

Claim 8.
M;u:M,,u—{kO] for each a,€ R(A)—C(B).
Take any e, R(A)—C(B), by Claim 5 we
have taht
45) M;cM,,.
By (45) we have that
(46) M; —{ko)C M, —{ke}.
By Claim 6 we have that
47) M7 —{ko}=M;,, .
By (46), (47) we have that
(48) Mz c M, — (k).
By Claim 7 and (48), we hae that
(49) Mt =M, —{kq.
By (49) we have Claim 8.
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Claim 9.
M:>M,for eachacJ, X J,—(R(A)—C(B)).
We assume that Claim 9 does not hold. Then there
is an a, =(i,,j,)€J1 X J;—(R(A)— ((B)) such that
(50) M5, N M,,.
By (50) there exists a k,& J; such that
(1) k,eM,, and
(52) k, &M, .
By (19), (51) we have that
(%3) i,€L, ), -
By (32), (52) we have that
54) i,&L, ;.-
Since a, =(i,,j,) & R(A)—C(B), we have that
(55) 1,&A or
(56) i, A and j,eB.

We have the two cases as follows:
(57) k,=ky,o0r
(58) &, k.

Thus we consider the following cases:
Case 1. (57)and (55) are hold.
Case 2. (57) and (56) are hold.

Case 3. (58) and (55) are hold.

Case 4. (58) and (56) are hold.
We consider Case 1.

Thus, we have that
(59) k,=k,and i,&A.

Now (59) divided into the cases:
60) k,=ky, i, A and j,€B.
61) k,=ky, i,&Aand j,&B.

The case (60).

By (60), we have that

(62) (ky1j,)=(korj,)E{ko} X B=S.
By (b), (62) we have that

©63) Lik,i =Lk, -
By (53), (54), (63) we have that

64) i,€Ly, =L, R, -

(64) has a contradiction. Hence, (60) does not happen.

The case (61).

By (61) we have that

(65) (kyrjy) = (korj)E{ko} X Jo—S.
By (b), (65) we have that

©66) Lis, )= Lr,in—4 -
By (54), (66) we have that

67 i, &LG, ;) =Lw,i)—A -
By (53), (67) we have that
68) i, A.
(68) contradicts to (61).
Hence, (61) does not happen. Therefore, Case 1 does
not happen.

The case 2.
We have that

69) k,=ky,i,€A and j,€B.
By (69) we have that

(70) (kyju)=(korjs)E{k} X B=S.
By (b), (70) we have that

D) Lik,i) =L -
By (53), (54), (71) we have that

(12) i,€L,;)=L,;,)RM, -
(72) has a contradiction. Hence, case 2 does not
happen.

The case 3.

We have that

(73) kyxky, i,8A.
By (73) we have that

(74) (kysjo)EJ3X Jo—({ko} X J2—=S).
By (b),(74) we have that

(75) L= Lo -
By (53), (54), (75) we have that

(76) i, €L, jy =L, Riv -
(76) has a contradiction. Hence, the case 3 does not
happen.

The case 4.

We have that

(17) k,>xky,i,€A and j,B.
By (77) we have that

(78) (kujy)EJsX Jo— (k) X J,—S).
By (b), (78) we have that

™) Lix,jy=L,, -
By (563), (54), (79) we have that

80 i, €L, =L, i Ry -
(80) has a contradiction. Hence, case 4 does not
happen.

Hence, all cases 1—4 do not happen. Therefore we
have Claim 9.

By Claim 5 and Claim 9 we have that

Claim 10.
M,=M, for eachac J; X J,—(R(A)—C(B)).
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Since L(lg) = MX(Lg)(f)(K) and

M(1,3)= MX(Lg)( g)(L(Lg)), by PrOpOSitiOIl 66, we
have that

Claim 11.
K=M,,,ie, K,=M, for eachac ;X J,.

By Claim 8, Claim 10 and Claim 11 we have

Claim 12.
K*=Mjie, K*=MX3(g )(L?m)) .

By Claim 12, Proposition 66 we have
MX 5 NK*)=MXq3(f)e MX3(9)(Li3)
= 1(L<*1,3)) =Lf s
Thus we have(c).
Hence, we have Proposition 71.

Proposition 72.

Let f:J;X J,—J; be a Latin square map and
h=wus(f). Let AcJ,BcJ, | Al =|B| =nand
ko€ Js Let K={(K o) x;,ELMTX(f) and
Losy=MX,:( XK)ELMTX(h), Losy={Lglgcsxs,- It K
satisfies the condition (RI), then we have the
followings:

(@) K*=(K%)aejx7, ELTMX(f) with
. [Ka—1{ko} foraeC(B)—R(A)

~{Ka forae ], X J,—(C(B)— R(A))

(b) Liys=(Lp)ses,x;,€LTMX(h) with

L*={L‘8—B for Be(J,—A) X {kg)

P Le  for BeTixTs—((J1=A) X (ko)
(©) K*=MXu3(h(Li3), Liyy=MXas(fNK").

a

By the similar ways as Proposition 71 we can show
Proposition 72.

Proposition 73.

Proposition 70 implies Proposition 67.

Proof. First, we consider (a) in Proposition 67. Thus
Ke LMTX(f) has the condition (CI). By Proposition
68, L5 =MX;(f)(K) satisfies the condition (RNSF).

By Proposition 70, L, ;€ LMTX(g), g=®q3(f).
Hence,L}; satisfies (b) of Proposition 71.

By the proof of (c) in Proposition 71, we showed
Claim 12 in the proof of Proposition 71. That is,
M= MX,3(9 L) €ELMTX(f)and Mg z= K"
Hence, K*€ LMTX(f), i.e., we have (RC). Thus, we
have (a).

WATANABE Tadashi

By similar way we can show (b) in Proposition 67.
Hence, we have Proposition 73.

Proposition 74.

(a) The following conditions are equivalent:
(CI) ky& K, for each aeC(B)— R(A).

(RI) kys K, for each acR(J,— A)—C(J,— B).

(b) The following conditions are equivalent:
(RI) ky& K, for each ae R(A)—C(B).

(CD) k&K, for each aeC(J,— B)—R(J,— A).

Proof. We show (a).

We have that

(1) AB)—R(A)=];XB—AX ],
=/iXxB—AXJ,N],XB
=Ji1XB—AXB=(J],—A)XB.

@) R(J,—A)—C(J,—B)
=(Ji—A)X J,— 1 X(J,—B)
=(i—A)X o= (1 X(J:—= B)N(J1—A) X ]
=(1—A)XJ.—(J1—A)X(J.—B)
=(L—A)X(J,—(J:— B)=(/,—A)X B.

By (1), (2) we have
3) C(B)—R(A)
By (3) we have(a).
By the same way we show (b).
Hence, we have Proposition 74.

R(J,—A)=CJ.— B).

Remark 75. ,

(1) By Proposition 73 we can say that
n—koku—domei Theorem (Proposition 70)
implies n —igeta Theorem (Proposition 67).

(2) When we observe n—igeta Theorem, by
Proposition 73, we investigate only » —igeta
Theorem for n=1,2,3,4.
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